Abstract

Atmospheric pressure (AP) liquid matrices for ultraviolet (UV) matrix-assisted laser desorption/ionization (MALDI) are presented. Doping a known organic chromophore, alpha-cyano-4-hydroxycinnamic acid (CHCA), into liquid media yielded a homogenous sample system with simplified sample preparation, increased sample lifetime, and added utility for APMALDI ion sources. Compared with vacuum situations, AP matrices are not as limited by vapor pressure, so liquid matrix formulations can focus on desorption and ionization versus vacuum stability and source contamination. The parameters studied include chromophore concentration, liquid support variations, and quantitation capability. Chromophore concentration adjustments provided insight into the necessary absorbance for UV-APMALDI and demonstrated the importance of laser penetration depth. Liquid support variations allowed adjustments of sample lifetime and analyte solvents. Extended sample lifetime is beneficial for instrument tuning and source optimization; however, increased liquid viscosity lowers signal intensity. The shot-to-shot reproducibility, as examined with individual ion packets, suggests that the liquid matrix can alleviate some inconsistencies seen with solid MALDI, suggesting a possibility for better quantitation. The measurements for laser penetration depth, solution viscosity, and solvent additives could add to the information on MALDI mechanisms. The liquid matrix offers advantages that complement current MALDI methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call