Abstract

Functional molecular liquids (FMLs) based on alkylated π-conjugated molecules have attracted attention as solvent-free and nonvolatile liquid materials with prominent optoelectronic features. Recently, novel FML compounds containing pyrene as the functional core were synthesized, and their rheological and photochemical properties were investigated. Although the molecules differ only in the number of alkyl chain substituents and their substitution positions, their viscosity coefficients are largely different beyond the Stokes-Einstein relation on the assumption of identical microscopic friction, indicating that local microscopic molecular interactions are crucial for the macroscopic rheological properties. Here, we report a theoretical study on the rheological properties of the alkyl-pyrene liquids by means of atomistic molecular dynamics (MD) simulations. We performed long-time MD simulations for tens of microseconds to obtain ample statistical samples of the alkyl-pyrene liquids and analyzed their liquid structures and diffusion dynamics based on spatiotemporal correlation functions. We found the formation of characteristic local liquid structures of π-π stacking of the pyrene moieties and locally anisotropic and anomalous diffusion dynamics, which remarkably vary depending on the alkyl substituent patterns. The present results provide an atomistic insight into the macroscopic rheological properties of alkyl-π FMLs and molecular design strategy for them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.