Abstract

This study presents a computational method combining smoothed particle hydrodynamics (SPH) and the discrete element method (DEM) to model flows containing a viscous fluid and macroscopic solid particles. The two-dimensional numerical simulations are validated by comparing the wake size, drag coefficient and local heat transfer for flow past a circular cylinder at Reynolds numbers near 100. The central focus of the work, however, is in computing flows of liquid–solid mixtures, such as the classic shear-cell experiments of Bagnold. Hence, the simulations were performed for neutrally buoyant particles contained between two plates for different solid fractions, fluid viscosities and shear rates. The tangential force resulting from the presence of particles shows an increasing dependence on the shear rate as observed in the Bagnold experiments. The normal force shows large variations with time, whose source is presently unclear but independent of the direct collisions between particles and the walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.