Abstract

Artificial liquid-repellent surfaces have attracted substantial scientific and industrial attention with a focus on creating functional topological features; however, the role of the underlying structures has been overlooked. Recent developments in micro-nanofabrication allow us now to construct a skin-muscle type system combining interfacial liquid repellence atop a mechanically functional structure. Specifically, we design surfaces comprising bioinspired, mushroom-like repelling heads and spring-like flexible supports, which are realized by three-dimensional direct laser lithography. The flexible supports elevate liquid repellency by resisting droplet impalement and reducing contact time. This, previously unknown, use of spring-like flexible supports to enhance liquid repellency provides an excellent level of control over droplet manipulation. Moreover, this extends repellent microstructure research from statics to dynamics and is envisioned to yield functionalities and possibilities by linking functional surfaces and mechanical metamaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.