Abstract

In this paper, a fiber-optic liquid pressure sensor is designed and developed by encapsulating the fiber Bragg grating (FBG) inside the adjustable double-flange cylinder rigid structure with flexible polymer polydimethylsiloxane (PDMS). Within the elastic deformation range of the PDMS, the proposed adjustable FBG-based liquid pressure sensor is proven to change its measuring range while maintaining high measurement sensitivity by simply adjusting the structure, that is, the sensor can achieve high measurement sensitivity in various liquid levels. In addition, the simulation and experimental results show that the sensor sensitivity can be enhanced by the proper changes of the structural parameters, such as the inner diameter, etc. The proposed sensor has shown that it has good linearity and stability, which provides a new opportunity for the monitoring of liquid pressure in oceans, dams and other environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call