Abstract

Polymethymethacrylate (PMMA) is one of the most important thermoplasts and a commonly used material in microsystem fabrication, for example, microfluidics owning mainly to its optical transparency, biocompatibility, low autofluorescence, and low cost. However, being a thermoplastic material PMMA is typically structured using industrial replication techniques making PMMA unsuitable for rapid prototyping. The fact that neither material nor processing technique can be directly transferred from laboratory to industrial state makes the research‐to‐business conversion often extremely difficult in microfluidics since material properties have a major impact on the final system behavior. This paper presents “Liquid PMMA,” a fast curing viscous PMMA prepolymer which can be used as a negative photoresist and directly structured using ultraviolet or visible light with tens of micron resolution and smooth surfaces. Using this technique microfluidic chips in PMMA can be fabricated within minutes. The cured Liquid PMMA parts show the same high optical transparency, low autofluorescence, and surface properties like commercial PMMA. In this way, microfluidic chips can be rapidly developed and optimized on the laboratory scale in the same material which is later on used on the industrial scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call