Abstract

Liquid phase synthesis techniques are commonly preferred for the preparation of nanosized inorganic solids due to several advantages over other methodologies, such as low energy consumption, safety, possibility of reactant recovery and, mainly, the homogeneity of the precursors and control of particle sizes and morphologies through bottom-up approaches. In this regard, Colloidal Chemistry plays a key role in the controlled production of different classes of nanoparticles, thus being a subject of growing interest in several fields of Materials, Inorganic, and Physical-Chemistry. Therefore, this article sought to present an introductory outline of Colloidal Chemistry, with a focus on the preparation of inorganic nanoparticles. Given the broadness of this subject, special attention was devoted to nanoparticles based on Rare Earth compounds, due to their current importance in several fields. Therefore, the work presents the principles involved in the most commonly applied methodologies for the liquid phase synthesis of nanoparticles, such as coprecipitations and hydro/solvothermal techniques, as well as precipitations into nanoreactors based on reverse microemulsions, with a brief survey of the main advances in these fields in recent years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.