Abstract
The microstructure evolution and densification of alumina containing 10 vol% calcium aluminosilicate glass and 0.5 wt% magnesium oxide sintered at 1600°C were quantified by measuring the evolution of pore‐size distribution, the redistribution of liquid phase, and the fraction of closed and open pores. The densification stopped at a limiting relative density during the final stage of sintering, and the small and large pores were filled simultaneously by glass during sintering. In addition, the results indicate that the pressure build‐up of the trapped gases in pores causes a significantly negative contribution to the driving force, and consequently the observed reduction in densification during the final stage of liquid phase sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.