Abstract

Al 2O 3/SiC nanocomposites are usually prepared by hot pressing or using high sintering temperatures, viz. 1700°C. This is due to the strong inhibiting effect of the nano-sized SiC particles on the densification of the material. Liquid phase sintering (LPS) can be used to improve densification. This work explored two eutectic additive systems, namely MnO 2.SiO 2 (MS) and CaO.ZnO.SiO 2 (CZS). The additive content in Al 2O 3/5 wt% SiC nanocomposite material varied from 2 to 10 wt%. Densities of up to 99% of the theoretical value were achieved at temperatures as low as 1300°C. Characterisation of the materials by XRD, indicated the formation of secondary crystalline phases in addition to Al 2O 3 and SiC. SEM and TEM analysis showed the presence of a residual glassy phase in the grain boundaries, and an increase in the average grain size when compared to nanocomposites processed without LPS additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.