Abstract

An unusual microstructure consisting of both Sn-Ag3Sn and Sn-Cu6Sn5 binary eutectic structures is observed in actual solder balls. In this study, the solidification process of the Sn-Ag3Sn binary eutectic structure after the growth of primary b-Sn in an undercooled Sn-2.8Ag-0.3Cu alloy was investigated by using thermal analysis and interruption tests to understand the formation of the unusual microstructure. First, fine Ag-enriched liquid zones formed around b-Sn after the growth of primary b-Sn. The Ag-enriched zones then gradually enlarged with the accumulation of Ag from the remnant liquid with a decrease in temperature. This indicated that the liquid-phase separation occurred in the remnant liquid after the nucleation of b-Sn. Eventually, when the temperature of the specimen decreased to approximately the binary eutectic temperature, eutectic Ag3Sn nucleated in the Ag-enriched zones. From interruption tests, we determined the precursor of the Sn-Ag3Sn binary eutectic structure before the beginning of Sn-Ag3Sn binary eutectic solidification. This finding corresponds to the precursor of the Sn-Cu6Sn5 binary eutectic structure observed in the Sn-1.0Ag-0.5Cu alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.