Abstract

Cyclohexanone is an important industrial intermediate in the synthesis of materials such as nylons, but preparing it efficiently through one-step hydrogenation of phenol is hindered by over-reduction to cyclohexanol. Using an efficient catalyst can enhance the selectivity of cyclohexanone at high phenol conversion. In this study, catalysts comprised of palladium nanoparticles supported on electrospun PVDF-HFP (polyvinylidene fluoride-co-hexafluoropropylene) nanofibers were prepared using the electrospinning technique. The catalysts were characterized using thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), transmission electron microscope (TEM), and drop shape analyzer (DSA). The prepared catalysts were used to hydrogenate phenol into cyclohexanone in a batch reactor. The Pd/PVDF-HFP catalyst showed a very high product selectivity and high phenol conversion. The conversion of phenol achieved was 98% with 97% cyclohexanone selectivity in 7 h using 15 wt% of palladium (0.0021 moles) relative to phenol (0.0159 moles). The turnover number (TON) and turnover frequency (TOF) values calculated were 7.38 and 1.05 h−1, respectively. This paper presents original research in heterogeneous catalysis using novel electrospun nanofibers. Multiphase hydrogenation of phenol to cyclohexanone over electrospun Pd/PVDF-HFP catalyst has not been reported by any researcher in the literature. This work will also provide a research window for the application of electrospun polymeric nanofibers in multiphase reactions.

Highlights

  • Cyclohexanone is an important chemical and it is a raw material used to produce ε-caprolactam and adipic acid

  • The superhydrophobic fiber when mats directed reaction the desired product leading to high cyclohexanone selectivity to and high phenol conversion

  • The superhydrophobic catalytic fiber mats directed the reaction toward the desired product leading high cyclohexanone selectivity high phenol conversion

Read more

Summary

Introduction

Cyclohexanone is an important chemical and it is a raw material used to produce ε-caprolactam and adipic acid. The first route generates undesirable byproducts due to high temperatures and pressures [15,18]. These byproducts lower the product selectivity and make the recovery/separation steps more difficult [15,18]. In the two-step process, first phenol undergoes hydrogenation to produce cyclohexanol, which further dehydrogenates to form cyclohexanone [1,10,14,15,17,18,23]. Vapor phase phenol hydrogenation to cyclohexanone is carried out with palladium type catalysts such as Pd@Al2 O3 , Pd@MgO, and others [3,4,9,10,15,18,20,22]. Liquid phase hydrogenation of phenol to cyclohexanone is in great interest since the reaction can be carried out at mild conditions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.