Abstract
Liquid phase oxidation (LPO) of hydrocarbon is an industrially important process to produce petrochemicals and pharmaceuticals. It follows a free radical path having initiation, propagation and termination. The initiation step is slow while the propagation and termination steps are fast. The main challenge of such process is to control product selectivity at an appreciable conversion level. With the advancement of microfluidic reactor technology, it is possible to control the free radical steps. The present contribution critically reviewed the reaction engineering aspects of LPO of hydrocarbon, the influence of microfluidic reactor design and operation on reaction mechanism, conversion and product selectivity. It also outlines the challenges associated with microfluidic reactor operation, and prospects to apply the understanding from microfluidic reactors in few sectors. The understanding from the free radical oxidation process can also be applied to any other free radical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.