Abstract

The catalytic activity of palladium-containing nanodiamonds (Pd/ND) is studied in the model reaction of liquid-phase hydrodehalogenation of monohalobenzenes (chlorobenzene, bromobenzene, and iodobenzene) and ortho-, meta-, and para-isomers of dichlorobenzene under mild conditions (Т = 45°С, $${{P}_{{{{{\text{H}}}_{2}}}}}$$ = 1 atm). The obtained results are compared with the catalytic behavior of the palladium-containing activated carbon (Pd/C) under identical conditions. It is found that catalyst Pd/ND is more active than Pd/C and is more stable against the poisonous effect of hydrogen halide forming during the reaction. Study of the effect of HCl and NaOH additives on the catalyst activity shows that, in the presence of HCl, poisoning of the catalyst occurs: the rate of reaction decreases; in the presence of NaOH, the catalyst activity grows; the rate of reaction increases as a result of hydrogen chloride neutralization by an alkali. For both catalysts the rate of reaction decreases in the sequence Cl > Br > I for monohalobenzenes and in the sequence para- > ortho- > meta-isomer in the case of dichlorobenzenes. The obtained dependences are explained using the quantum-chemical modeling of substrates of model reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.