Abstract

Development of a Crotalaria juncea based biorefinery produce large quantity of waste glycerol after trans-esterification of the juncea seeds. This glycerol, after purification, is used as a substrate for producing succinic acid on a microbial route. Hydrogenation of this bio-refined succinic acid is carried out under high pressure in order to produce 1,4-butanediol (BDO) using a batch slurry reactor with cobalt supported ruthenium bimetallic catalysts, synthesized in-house. It is demonstrated that, using small amounts of ruthenium to cobalt increases the overall hydrogenation activity for the production of 1,4-butanediol. Hydrogenation reactions are carried out at various operating temperatures and pressures along with changes in the mixing ratios of ruthenium chloride and cobalt chloride hexahydrate, which are used to synthesize the catalyst. The Ru-Co bimetallic catalysts are characterized by XRD, FE-SEM and TGA. Concentrations of the hydrogenation product are analyzed using Gas chromatography-Mass spectrometry (GC-MS). Statistical analysis of the overall hydrogenation process is performed using a Box-Behnken Design (BBD).

Highlights

  • Succinic acid is reported many times as a potential platform chemical produced in bio-refineries [1, 2]

  • The prepared catalysts are applied for hydrogenation of succinic acid, already bio-refined using microbial fermentation of waste glycerol, to produce 1,4-butanediol under high pressure

  • The yield of 1,4-butanediol increased with the percentage of ruthenium present along with cobalt in ruthenium-cobalt bimetallic catalysts (Ru-Co) bimetallic catalysts

Read more

Summary

Introduction

Succinic acid is reported many times as a potential platform chemical produced in bio-refineries [1, 2]. This dicarboxylic acid is an intermediate of the tricarboxylic acid (TCA) cycle and the same could replace the maleic anhydride produced from oil as a C4 building-block chemical. Conversion of succinic acid (SA) to high-value compounds has become a state-of-the-art research topic in the last few years resulting from its large-scale microbial productions utilizing waste glycerol as the primary substrate. Many research groups from all over the world have reported conversion of bio-refined succinic acid into various value-added chemicals. The purification costs could be as high as 50–80% of the total process costs

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.