Abstract

Unsupported and laponite supported NiPMoS catalysts were prepared under the hydrothermal method and investigated for liquid-phase hydrodeoxygenation of furfural in a high-pressure batch reactor at 423 ​K − 463 ​K under 20 ​bar H2 pressure. The reaction significantly produced 94% of furfural conversion with 75% yield of 2-MF on NiPMoS catalyst whereas, NiPMoS/Lap catalyst exhibited 28% of 2-MF yield with complete conversion at 463 ​K under 20 ​bar H2 pressure in toluene solvent. The influence of process parameters such as reaction temperature, reactant volume, catalyst compositions, and hydrogen pressure on furfural conversion and product yield was investigated in detail. The high reactivity and synergetic effect of the NiPMoS catalyst are due to added phosphorus, which has a profound influence on the structure of the catalyst, thereby increasing surface acidity, basicity, hydrogen consumption, and a number of MoS2 fringes and the dispersion of MoS2 on the surface of the support. The catalysts were characterized based on HRTEM, H2, CO2, and NH3 TPD, FT–IR, FT–Raman, DRS UV–Vis, XRD, N2–physisorption, and TGA. Recyclability, N2–physisorption, and XRD results confirm the stability and practical applicability of the catalyst for industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.