Abstract
Platinum–germanium and platinum–tin catalysts supported on silica, containing different amounts of Sn and Ge, were synthesized using the surface organometallic chemistry on metals technique. The catalysts were characterized using transmission electron microscopy, X-ray photoelectron spectra and X-ray absorption near edge structure and extended X-ray absorption fine structure; and were tested in the liquid-phase selective hydrogenation of furfural. The atomic ratio between the two metals resulted the key factor towards the optimization of the activity and selectivity of the bimetallic catalysts. The bimetallic catalysts were more active than the parent Pt/SiO2 catalyst in the hydrogenation of furfural. These results can be accounted for by considering a new type of active site having an architecture which would favor the hydrogenation of the C=O group is created, allowing an increased activity towards obtaining furfuryl alcohol. All the studied systems allowed to obtain furfuryl alcohol with high selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.