Abstract

Traditionally, the acquisition of 2D materials involved the exfoliation of layered crystals. However, the anisotropic bonding arrangements within 3D crystals indicate they are mechanically reminiscent of 2D counterparts and could also be exfoliated into nanosheets. This report delineates the preparation of 2D nanosheets from six representative 3D metal-organic frameworks (MOFs) through liquid-phase exfoliation. Notably, the cleavage planes of exfoliated nanosheets align perpendicular to the direction of the minimum elastic modulus (Emin) within the pristine 3D frameworks. The findings suggest that the in-plane and out-of-plane bonding forces of the exfoliated nanosheets can be correlated with the maximum elastic modulus (Emax) and Emin of the 3D frameworks, respectively. Emax influences the ease of cleaving adjacent layers, while Emin governs the ability to resist cracking of layers. Hence, a combination of large Emax and small Emin indicates an efficient exfoliation process, and vice versa. The ratio of Emax/Emin, denoted as Amax/min, is adopted as a universal index to quantify the ease of mechanical exfoliation for 3D MOFs. This ratio, readily accessible through mechanical experiments and computation, serves as a valuable metric for selecting appropriate exfoliation methods to produce surfactant-free 2D nanosheets from various 3D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.