Abstract

The effects were investigated of the starting particle size (i.e., nanometer or submicrometer powders), content of Y3Al5O12 additives (YAG; in the range 5–20wt.%), and difference of size scales between the two particle types on the liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. It was found that flash sintering benefits from the refinement of the particles size, the increase in additive content, and the smaller size scale of the particulate additive. It was also found that under the present flash sintering conditions (i.e., 900°C furnace temperature, 13A current, and 50s in flash state) the resulting ceramics are, despite the formation of liquid phase, porous to a greater or lesser extent, and exhibit decreasing porosity gradients from their surface to the centre. These observations are rationalized to extract guidelines for powder batch design contributing to the pressureless ultrafast sintering of non-oxide advanced ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.