Abstract

The liquid-phase adsorption of n-pentane, n-hexane, n-heptane, and n-octane from natural gasoline on zeolite CaA and their catalytic isomerization has been investigated experimentally and theoretically with the aim of increasing the octane number of a low-octane gasoline. An integrated process flowsheet combining processes in an adsorber and in an isomerization reactor has been developed. The basic results are as follows: the ultimate activity of CaA with respect to n-pentane, n-hexane, n-heptane, and n-octane in the case of their simultaneous adsorption at 25.0°C is 4.2, 4.7, 5.1, and 6.3 kg/100 kg, respectively. Kinetic and outlet adsorption data are also presented. The maximum yield of C5, C6, C7, and C8iso-paraffins is 62.0, 70.0, 66.0, and 47.0%, respectively. A mathematical model of the processes has been developed, and their parameters have been calculated. Calculated and experimental data are in satisfactory agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call