Abstract

Demand for locally produced, organically grown leafy greens is increasing throughout the United States. However, due to lack of efficient organic fertilizers (OFs) for soilless substrates, organic greenhouse production of leafy greens may be challenging. Therefore, a greenhouse study was conducted to analyze the effects of six liquid OFs on growth and development of lettuce in a soilless system. Two experiments were conducted using a randomized block design, and treatments included six fish- or plant-based OFs: OF1 (5N–1P–1K), OF2 (2N–5P–1K), OF3 (3N–1P–1K), OF4 (2N–2P–2K), OF5 (4N–1P–1K), and OF6 (3N–3P–2K); one inorganic fertilizer treatment (IF, 24N–8P–16K); and one unfertilized control treatment. Fertilizer solutions were prepared at 2 dS⋅m–1 and applied at 100 mL/plant. In Expt. 1, fresh biomass for IF-treated plants was 12% to 38% greater than OF treatments, whereas this difference ranged from 25% to 57% in Expt. 2. Similarly, leaf area values of IF-treated plants were 5% to 40% greater than OF treatments in Expt. 1, and the difference ranged from 28% to 90% in Expt. 2. A possible explanation could be greater availability of nutrients in the IF treatment compared with OF treatments. There was no significant difference among fertilized treatments for number of leaves and stem diameter. Based on the index-based ranking, fish-based (OF1) and fish- and plant-based (OF2 and OF6) performed well among different liquid OFs used in the study. Although the yield under OFs was less compared with that under IF, there is potential to reduce this yield gap by optimized fertility management of these fertilizers. Future research is needed to investigate the impact of optimized rate, timing, different placement, and additional nitrogen (N) sources of OFs on the soilless production of lettuce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.