Abstract

The functional groups in porous carbon generally suffer a severe loss during the high-temperature carbonization. Instead, the low-temperature synthesis of carbon featuring porous structures and abundant functional groups is not only a solution that evades the pitfalls of pyrolysis but also is of significance for the development of synthetic methodology. Herein, a liquid metal interfacial engineering strategy is reported for the synthesis of porous carbon using CCl4 as the carbon precursor and sodium-potassium alloy (NaK) as the reducing agent, which is superior to traditional synthetic methods because it enables the engineering of a highly active liquid metal alloy microemulsion to directly generate porous carbon at ambient temperature. As synthesized porous carbon featured abundant carbon-chlorine bonds can be tandem-grafted with imidazole and 1,2-dibromoethane to achieve a CO2 cycloaddition catalyst, which exhibits excellent catalytic activity, in addition to exceptional stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call