Abstract

This study explores the room-temperature synthesis of porous materials and the immobilization of CO2 without the use of metals. The porous aromatic frameworks synthesized at room temperature retain the important functional group structure, and the abundance of carbon-chlorine bonds creates an excellent environment for imidazole linkage. Consequently, a catalyst conducive to the cycloaddition of carbon dioxide is obtained. Hexachloro-p-xylene is explored as the precursor, and a catalyst conducive to carbon dioxide cycloaddition is obtained. The functionalized porous aromatic frameworks (PAF-280-I/B) possess a conversion of 99.6% with a selectivity of 98.9% toward styrene carbonate (SC). The findings of this study can help mitigate the impact of greenhouse gases and enable the production of organic compounds in the circular carbonate platform, turning waste into valuable resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call