Abstract

Liquid metal-electrolyte can offer electrochemically reducing interfaces for the self-deposition of low-dimensional nanomaterials. We show that implementing such interfaces from multiprecursors is a promising pathway for achieving nanostructured films with combinatory properties and functionalities. Here, we explored the liquid metal-driven interfacial growth of metal tellurides using eutectic gallium-indium (EGaIn) as the liquid metal and the cation pairs Ag+-HTeO2+ and Cu2+-HTeO2+ as the precursors. At the EGaIn-electrolyte interface, the precursors were reduced and self-deposited autogenously to form interconnected nanoparticle networks. The deposited materials consisted of metal telluride and tellurium with their relative abundance depending on the metal ion type (Ag+ and Cu2+) and the metal-to-tellurium ion ratios. When used as electrode modifiers, the synthesized materials increased the electroactive surface area of unmodified electrodes by over 10 times and demonstrated remarkable activity for model electrochemical reactions, including HexRu(III) responses and dopamine sensing. Our work reveals the promising potential of the liquid metal-templated deposition method for synthesizing complex material systems for electrochemical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call