Abstract
Laboratory-scale experiments for removing Mo and MoO3 from molten borosilicate glass were performed using liquid Cu as an extractant. Removal of Mo from the simulated HLW glass containing oxides of Nd, Fe, Zr, Mo, Sn, Ni, Sr, Cd, Ru, and Se was also performed, and the fractions of these elements transferred into Cu were examined. Mixtures of Cu anda ternary SiO2-B2O3-Na2O glass containing metallic Mo or MoO3 were heated in an alumina crucible at 1,673K in an Ar environment. The amounts of Mo and MoO3 added to 10 g of the ternary glass were fixed at 0.1 and 0.15 g, respectively. As for the glass containing metallic Mo, more than 90% of Mo was extracted into liquid Cu. Spherical Cu metal buttons containing Mo formed on the bottom of the crucible when Cu was added at more than 10 times that of Mo on a mass basis. Removal of Mo from the glass containing MoO3 was also achieved by the addition of Si as a reducing agent for the reduction from MoO3 to Mo. The fraction of Mo extracted into liquid Cu depended on the molar ratio of Si to Cu added to the glass. The fraction increased up to 84% with an increase in the molar ratio of Si/Cu. However, the excess addition of Si may enhance the chemical interaction between the metal phase and the glass phase, and some of the metal phase containing Mo remained in the glass phase without forming a metal button. The optimum molar ratio of Si/Cu that produces the highest removal fraction was found to be approximately 0.5. Almost the same removal fraction of 88% was obtained from the simulated HLW glass under the condition of Si/Cu = 0.5. Nearly 100% of Ru was extracted into Cu with Mo, while Sr, Zr, and Nd were hardly extracted and remained in the glass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.