Abstract
This study describes the liquid metal embrittlement (LME) of dual-phase steels and its relationship with the steel microstructure. These steels are zinc coated for corrosion protection, but during welding, they can experience LME. The LME response was studied by hot ductility testing using a Gleeble thermomechanical simulator. The DP1000HD steel exhibited severe LME susceptibility; in contrast, DP800 steel was immune to LME. The DP1200LY steel had a LME response in between these two steels. The LME severity was temperature-dependent and was limited to a range of temperatures, 750–900 °C. SEM-based fractography showed that when LME occurred, it advanced in an intergranular fashion. Environmental fracture, such as LME, is generally strain rate sensitive, and we will discuss the impact of strain rate on the LME fracture over a range of 10–3 to 10 s−1. Detailed microscopic investigation of the parent and retained austenite using EBSD was used to link the steel microstructure to its LME response.KeywordsLiquid metal embrittlementAdvanced high strength steelsDP steelsPrior austenite grains
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.