Abstract
There is an increasing demand for power sources of wearable sensors and personal refrigeration. Flexible thermoelectric device (FTED) can be ideal candidate for such purpose. This paper reports on a compact, high-power and flexible thermoelectric device based on a bulk thermoelectric (TE) material. For thermoelectric device based on bulk TE materials to be flexible, (i) flexible electrodes and (ii) holders to secure TE materials are required. In FTED, we have used liquid-metal encapsulated in polydimethylsiloxane (PDMS) as electrodes on one side above the bending neutral axis and flexible printed circuit boards (FPCB) as electrodes below the bending neutral axis. Hence, the stretchability of the liquid metal electrode and flatness of the FPCB are fully utilized to reduce thermal contact resistance. Additionally, we used PDMS and flexible wires as holders to eliminate filler materials that annihilate thermal bypass, i.e., heat transfer not going through TE materials. For refrigeration using portable batteries as power sources, the refrigerated skin temperature was lowered by 5.4 K which is adequate for humans to perceive coldness, according to theoretical analysis. For human body-heat harvesting, the open-circuit voltage and output power density were 7.38 mV and 8.32 μW/cm2 or 123.74 μW, respectively. This implies that the FTED can be used both as a portable refrigerator and a wearable body-heat harvester.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.