Abstract

Growing high-quality semiconducting crystals isn’t easy. It typically takes high temperatures, highly reactive precursors, and extensive equipment. Electrochemical deposition could simplify the process, but attempts using conventional solvents yield “amorphous junk,” says Stephen Maldonado of the University of Michigan. Working with colleagues at Ohio State University, Maldonado’s team has found that a liquid metal can help electrochemistry conquer this shortcoming (J. Am. Chem. Soc. 2017, DOI: 10.1021/jacs.7b01968). The researchers started with an aqueous germanium oxide solution and introduced eutectic gallium-indium, or eGaIn. This liquid metal forms an intermediate layer between the solution and a solid silicon substrate. Germanium reduced in water can cross the interface into the eGaIn and migrate to the silicon. By tuning the thickness of the eGaIn layer, the researchers ensure that germanium accumulates into a high-quality, crystalline film. This low-cost, benchtop approach works at room temperatur...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call