Abstract

Electronic textiles harmoniously interact with the human body and the surrounding environment, offering tremendous interest in smart wearable electronics. However, their wide application faces challenges due to the lack of stable and stretchable power electrodes/devices with multifunctional design. Herein, an intrinsically stretchable liquid metal-based fibrous anode for a stable Zn-ion battery (ZIB) is reported. Benefiting from the liquid feature and superior deformability of the liquid metal, optimized Zn ion concentration distribution and Zn (002) deposition behavior are observed, which result in dendrite-free performance even under stretching. With a strain of 50%, the ZIB maintains a high capacity of 139.8 mAh cm-3 (corresponding to 83.0% of the initial value) after 300 cycles, outperforming bare Zn fiber-based ZIB. The fibrous ZIB seamlessly integrates with the sensor, Joule heater, and wirelessly charging device, which provides a stable power supply for human signal monitoring and personal thermal management, holding promise for the application of wearable multifunctional electronic textiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.