Abstract

Stable and reliable electrical properties of interconnects and interfaces between flexible/stretchable and rigid materials/components are essential for the practical applications of flexible electronic devices and systems; traditional metal thin films and hard solder interconnects and interfaces can no longer meet these requirements. As an emerging soft conductive material, liquid metal has the advantages of high stretchability, flexibility, etc. over other soldering materials, and it has been used in interconnects and interfaces for some flexible electronics. In this study, we report a detailed investigation on the reliability and stability of liquid metal-based interconnects/interfaces under various mechanical deformations, including extension, bending, torsion, high frequency vibration and high temperature operation; we also compared the results with those of interconnects and interfaces using silver paste, the most commonly used solder for flexible electronics. The results show that liquid metal interconnects and interfaces maintain high conductivity under severe elongation up to 95% and 130%, upon bending with a curvature radius as low as ∼1.5 mm, and upon twisting up to 360°; meanwhile, interconnects and interfaces with silver paste filler lose electrical conductivity at elongations of 0.6% and 60%, respectively. Liquid metal interconnects and interfaces show superior performance to silver paste interconnects and interfaces because liquid metal can be re-shaped to make good contact with objects, while the silver paste becomes solid and rigid once dried and thus loses contact with other objects under deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.