Abstract

AbstractCore–shell nanostructures have received widespread attention because of their potential usage in various technological and scientific fields. However, they still face significant challenges in terms of fabrication of core–shell nanostructure libraries on a controlled, and even programmed scale. This study proposes a general approach to systematically fabricate core–shell nanohybrids using liquid‐metal Ga alloys as reconfigurable templates, and the initiation of a local galvanic replacement reaction is demonstrated utilizing an ultrasonic system. Under ultrasonic agitation, the hydrated gallium oxides generated on the liquid metal droplets, simultaneously delaminated themselves from the interfaces. Subsequently, single‐metal or bimetallic components are deposited on fresh smooth Ga‐based alloys via galvanic reactions to form unique core–shell metal/metal nanohybrids. Controlled and quantitative regulation of the diversity of the non‐homogeneous nanoparticle shell layer composition is achieved. The obtained core–shell nanostructures are used as efficient microwave absorbers to dissipate unwanted electromagnetic wave pollution. The effective absorption bands (90% absorption) of core–shell GaNi and GaCoNi nanohybrids are 3.92 and 3.8 GHz at a thickness of 1.4 mm, respectively. This general and advanced strategy enables the growth of other oxides or sulfides by spontaneous interfacial redox reactions for the fabrication of functional materials in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call