Abstract

Chaotic advection plays an important role in microplatforms for a variety of applications. Currently used mechanisms for inducing chaotic advection in small scale, however, are limited by their complicated fabrication processes and relatively high power consumption. Here, a soft actuator is reported which utilizes a droplet of Galinstan liquid metal to induce harmonic Marangoni flow at the surface of liquid metal when activated by a sinusoidal signal. This liquid metal actuator has no rigid parts and employs continuous electrowetting effect to induce chaotic advection with exceptionally low power consumption. The theory behind the operation of this actuator is developed and validated via a series of experiments. The presented actuator can be readily integrated into other microfluidic components for a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call