Abstract

Abstract In this work, the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932 μm. Aqueous phosphoric acid solution and 80% tri-n-butyl phosphate (TBP) in kerosene were selected for the investigation of mass transfer performance in quartz glass/high density polyethylene (HDPE) microchannel. High dispersion between the two immiscible fluids can be obtained in the microchannel due to the intensifying action of centrifugal force, and the majority of the droplets with average diameter of 20–100 μm were produced in the microchannel. The flow rate and rotation speed were found to have great effects on the extraction efficiency and average residence time. The empirical correlation of average residence time based on experimental data was developed by theoretical analysis and data fitting method, and a mathematical model of the mass transfer coefficient in dispersed phase was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.