Abstract

The phenomenon of liquid-liquid phase separation is found in numerous biological processes. The biomolecules enveloped in the phase-separated droplets experience an obviously different environment from those in cellular or aqueous solution. Herein, we quantitatively characterized the thermodynamics and exchange kinetics of a model protein SH3 domain in the condensed phase of an intrinsically disordered region of a germ cell-specific protein DDX4N1 by using 19F-NMR spectroscopy. The stability and exchange rate of the SH3 domain are different from those in buffer and macromolecular crowding conditions. Our finding indicates that the local transient ordered microstructure and heterogeneity in the condensates play significant roles in modulating the biophysical properties of the enveloped proteins, and this finding may be essential to further our understanding how phase separation regulates the function of proteins in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.