Abstract
Liquid−liquid equilibria of the quaternary system water + caprolactam + 1-octanol + ammonium sulfate at (25, 45, and 65) °C were determined. In our experiments, the distribution coefficient of caprolactam was usually higher than 1. With increasing temperature and salt content, the distribution coefficient of caprolactam increased. With increasing caprolactam content, the distribution coefficient became smaller. Compared to benzene, 1-octanol is nontoxic and has a much larger extraction capacity. Hence 1-octanol is a prospective substitute of benzene in caprolactam extraction. The extension of the Lyngby modified UNIFAC model was applied to represent the equilibrium data of systems without ammonium sulfate. CH2NHCOCH2 was defined as a new group, and new interaction parameters were determined from the equilibrium data of the ternary systems water + caprolactam + 1-octanol, water + caprolactam + 1-heptanol, water + caprolactam + benzene, and water + caprolactam + toluene. With the new interaction parameters,...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.