Abstract

Molecular dynamics simulations leading to the isothermal compressibility, the isobaric thermal expansivity, and the isobaric heat capacity of TIP4P/2005 water are found to be consistent with the coordinates of its second, liquid-liquid critical point reported recently by Debenedetti et al. [ Science 2020, 369, 289-292]. In accord with the theory of critical phenomena, we encounter that the rise in the magnitude of these response functions as temperature is lowered is especially marked along the critical isochore. Furthermore, response-function ratios provide a test for thermodynamic consistency at the critical point and manifest nonuniversal features sharply distinguishing liquid-liquid from standard gas-liquid criticality. The whole pattern of behavior revealed by simulations is qualitatively the same as the one of a three-state Ising model of water exhibiting a low-temperature liquid-liquid critical point. Exact solutions for the two-state components of such a three-state model are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.