Abstract

Titania has attracted significant interest due to its broad catalytic applications, many of which involve titania nanoparticles in contact with aqueous electrolyte solutions. Understanding the titania nanoparticle/electrolyte interface is critical for the rational development of such systems. Here, we have employed liquid-jet ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to investigate the solid/electrolyte interface of 20 nm diameter TiO2 nanoparticles in 0.1 M aqueous nitric acid solution. The Ti 2p line shape and absolute binding energy reflect a fully oxidized stoichiometric titania lattice. Further, by increasing the X-ray excitation energy, the difference in O 1s binding energies between that of liquid water (O 1sliq) and the titania lattice (O 1slat) oxygen was measured as a function of probe depth into the particles. The titania lattice, O 1slat, binding energy decreases by 250 meV when probing from the particle surface into the bulk. This is interpreted as downward band bending at the interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call