Abstract

The instability of circular liquid jet immersed in a coflowing high velocity air stream is studied assuming that the flow of the viscous gas and liquid is irrotational. The basic velocity profiles are uniform and different. The instabilities are driven by Kelvin–Helmholtz instability due to a velocity difference and neckdown due to capillary instability. Capillary instabilities dominate for large Weber numbers. Kelvin–Helmholtz instability dominates for small Weber numbers. The wavelength for the most unstable wave decreases strongly with the Mach number and attains a very small minimum when the Mach number is somewhat larger than one. The peak growth rates are attained for axisymmetric disturbances ( n = 0) when the viscosity of the liquid is not too large. The peak growth rates for the first asymmetric mode ( n = 1) and the associated wavelength are very close to the n = 0 mode; the peak growth rate for n = 1 modes exceeds n = 0 when the viscosity of the liquid jet is large. The effects of viscosity on the irrotational instabilities are very strong. The analysis predicts that breakup fragments of liquids in high speed air streams may be exceedingly small, especially in the transonic range of Mach numbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call