Abstract
An experimental and analytical investigation was conducted to determine the free surface shapes of circular jets impinging normal to sharp-edged disks in zero gravity. Experiments conducted in a zero gravity drop tower yielded three distinct flow patterns which were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted indicating regions where viscous forces were not significant when computing free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane. The resulting nonlinear equations were solved numerically and comparisons were made with the experimental data for the inertia dominated regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.