Abstract
This paper intends to investigate the influence of unsteadiness in the liquid jet disintegration process on downstream fluctuations of spray characteristics in a coaxial twin-fluid injector. Time-resolved high-speed shadowgraphic imaging of the spray was obtained for different axial locations downstream of the injector exit at z = 0, 8Dl, and 30Dl, where Dl is the central liquid tube diameter. The primary jet breakup unsteadiness close to the injector exit was characterized by measuring both shear-driven Kelvin–Helmholtz (KH) instability and flapping instability in addition to jet breakup length fluctuations. Downstream of the liquid jet core region, the liquid shedding rate (fshed) was measured at z = 8Dl. The power spectrum of time series data of instantaneous volume mean diameter (VMD) measured at z = 30Dl indicated periodic variation of the droplet size. The corresponding frequency (fVMD) was obtained. It was found that for lower range of gas-to-liquid momentum flux ratio (M < 4), both fshed and fVMD are larger than the frequency of KH instability. Also, for such conditions, larger temporal variation of the droplet size is realized, and this leads to higher fluctuations of the local liquid mass flux. Proper orthogonal decomposition analysis of the shadowgraph images for different axial locations identified similar topology of the dominant mode that corresponds to flapping instability. The results suggest that even far downstream of the injector exit, some memory of the upstream unsteady jet breakup process is retained, which strongly influences spatio-temporal evolution of droplet characteristics, thereby contributing to local spray fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.