Abstract

Liquid intrusion into zeolitic imidazolate framework 7 (ZIF-7) has been observed for the first time. Among the three typical phases of ZIF-7, we discover that only the guest-free ZIF-7-II structure can be intruded by mechanical pressure, and intriguingly, this pressurized liquid intrusion behavior is detected only in nanocrystals, indicating the crystal size effect. Because of its unique combination of non-outflow property and high intrusion pressure, water intrusion into ZIF-7-II generates a marked energy dissipation capacity of ∼2 J/g despite its limited pore volume. We present several strategies that can be easily implemented to tune its intrusion pressure and energy dissipation and accomplish material reusability. Remarkably, we found that the pore cavities of ZIF-7-II can accommodate water molecules without experiencing any phase transition, which is entirely different from other solvents whose incorporation will trigger a spontaneous conversion into ZIF-7-I. Our pressure-vs-volume data further reveal that the process of water infiltration and retainment is controlled by the gate-opening/closing mechanism, which has enabled us to probe the viscoelasticity of ZIF-7 via cyclic liquid intrusion experiments. This study has deepened our understanding of the time-dependent mechanical properties of ZIFs and shed new light on the structural flexibility central to the novel applications of metal-organic framework materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call