Abstract

In this article, a new kind of anti-icing material, liquid-infused micro-nanostructured MOF coating (LIMNSMC), was designed and prepared. The porous micro-nanostructures of metal-organic framework (MOF) coating were first utilized to immobilize the lubricating liquid. The anti-icing performance of LIMNSMC could be tuned by the viscosity, the amount of lubricating liquid, and the surface morphology. Under appropriate conditions, the LIMNSMC shows high anti-icing performance with the condensed water-freezing temperature of approximately -39 °C and the ice adhesion strength of approximately 10 kPa as the micro-nanostructures of MOF coating reduce the contact area and hinder the heat transfer between the surface and water droplets, and the lubricating layer effectively reduces the heterogeneous nucleation sites on the surface, as well as reduces the ice adhesion. LIMNSMCs exhibit good durability as the lubricating liquid can be effectively immobilized by the nanopores of MOFs. So, the high anti-icing performance of LIMNSMCs could be maintained throughout 10 freezing/melting cycles and six icing/de-icing cycles and slightly decreased after high-speed centrifugation and 50 abrasion cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.