Abstract
A method of estimating natural modes and frequencies of vibrations for elastic shells of revolution conveying a liquid is proposed. The vibration modes of the liquid-filled elastic shells are presented as linear combinations of their own vibration modes without liquid. The explicit expression for fluid pressure is defined using Bernoulli’s integral and potential theory suppositions. Non-penetration, kinematic, and dynamic boundary conditions are applied at the shell walls and on a free liquid surface, respectively. The solution of the hydro-elasticity problem is found out using an effective technique based on coupled finite and boundary element methods. Computational vibration analysis of elastic truncated conical shells with different fixation conditions is accomplished. Sloshing and elastic walls frequencies and modes of liquid-filled truncated conical tanks are estimated. Both rigid and elastic bottoms of shells are considered. Some examples of numerical estimations are provided to testify the efficiency of the developed method
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.