Abstract

The effects of compressive stress and undercooling of Ga to liquid gallium penetration along grain boundaries (GBs) of aluminum were investigated. It was shown that the penetration rate does not change with the temperature if gallium is in liquid state. The effect of compressive stress applied to Al samples was demonstrated. The time to wetting of all aluminum GBs increased several orders of magnitude if the compressive stress was between 0.1 and 6 MPa. It was proved that solid-liquid transformation does not take place during penetration process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call