Abstract

Ionic conductors are promising candidates for fabricating soft electronics, but currently applied ionic hydrogels and organogels suffer from liquid leakage and evaporation issues. Herein, we fabricated a free-liquid ionic conducting elastomer (LFICE) with dry lithium bis(trifluoromethane sulfonimide) and elastomeric waterborne polyurethane. The resultant versatile LFICE exhibits superior tensile strength (∼4.5 MPa), satisfactory stretchability (>900%), excellent ionic conductivity (8.32 × 10-4 S m-1 at 25 °C), and sensitive strain (3.21) and temperature (2.22% °C-1) response. The LFICE also presents durable environmental stability due to the all-solid-state feature. In the exploration of application prospects, the as-assembled LFICE sensor can precisely and repeatedly detect human motion and temperature changes, demonstrating its potentials in digital medical diagnosis and monitoring; the as-assembled LFICE thermoelectric generator (TEG) shows a high ionic thermovoltage of 4.41 mV K-1, paving a bright path for the advent of self-powered soft electronics. It is believed that this research boosts the facile fabrication of environmental stable stretchable ionic conductors holding great promise in next-generation soft electronics integrated with dual thermo- and strain-response and energy harvesting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call