Abstract

Unsteady liquid film flow on a rotating disk, which is related to a spin coating technique to form a thin uniform film on a plate, is calculated numerically. Vewly developed calculation method, where the surface tension on the liquid surface can be taken into account, is applied. The numerical results reveal the followings : The hemi-spherical liquid on the disk, which starts to rotate impulsively from rest, spreads by a gravitational force at the first stage. The development of the distribution of radial and azimuthal velocities is affected complicatedly by the Coriolis force, viscous force and centrifugal force. The liquid spreads mainly by centrifugal force and forms a uniforml thin film on the disk at the last stage. The surface tension has a little influence on the spreading process only at the first stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.