Abstract
Liquid film plays a crucial role in void fraction, friction pressure drops, momentum and heat transfer in the two-phase flow. The film thickness measurement experiments of annular flow at four pressure conditions have been conducted using near-infrared sensor. The signal is processed by variational mode decomposition, whose parameters are optimized using the sparrow search algorithm. The envelope spectrum and Pearson correlation coefficient judgment criteria were adopted for signal reconstruction, and the value of the liquid film thickness is obtained. The effect (such as flow rate, pressure, entrainment, etc) of the liquid film thickness are analyzed theoretically. The characterization parameters Weg″, Wel, Nμl and X mod have been extracted and optimized, and a new average liquid film thickness correlation is proposed. The laboratory results indicate that the mean absolute percentage error of the predictive correlation is 4.35% (current data) and 12.02% (literatures data) respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.