Abstract

In order to predict the fuel mixture preparation inside the cylinder of port fuel injection engines, a model for the aerodynamic stripping of the fuel film deposited on the manifold walls is discussed, and a model for the fuel film separation and atomization near the sharp edges is developed. A separation criterion is set up using an analogy with Rayleigh-Taylor instabilities driven by the inertial forces of the liquid film. To determine the physical parameters of the resulting droplets, a liquid sheet atomization scheme is used. The critical value for the separation criterion is adjusted using experimental data obtained in 2D wind tunnel equipped with different steps shaped as a valve seat, and reproducing the main characteristics of the intake of spark ignition engine. CFD simulations are performed using the KMB code, a modified version of KIVA-2 already including a stochastic Lagrangian description of the spray, and an Eulerian liquid film model. Computations results for different operating conditions are in good agreement with the images of film separation and measured droplet size distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.