Abstract

Multidrug resistance (MDR) occurs frequently and is a major challenge in tumor treatment. The lipid composition in the cell membrane and the redox balance are closely associated with the development of MDR. Liquid extraction surface analysis in combination with mass spectrometry (LESA-MS) has the characteristics of minimal sample preparation, rapid analysis, high sensitivity and high throughput, and has obtained wide applications. LESA-MS was employed to in situ determine the lipids and other specific metabolites of intact MCF-7/ADR cells (adriamycin-resistant breast cancer cells) and its parental MCF-7/S cells grown on a glass slide. In situ atomic force microscopy was used to observe the morphology of tumor cells before and after extraction. Multivariate statistical analysis was used to investigate the potential lipid biomarkers correlated with the MDR. Moreover, the cell membrane fluidity and potential were determined. The changes in the level of the lipids were closely correlated with the multidrug resistance of MCF-7/S cells. Moreover, lower cell membrane fluidity and higher cell membrane potential were observed and thus demonstrated the changes in the cell membrane induced by multidrug resistance. Also, the ratios of GSH/GSSG, ATP/ADP and ATP/AMP were significantly higher in MCF-7/ADR cells relative to MCF-7/S cells. Lower cell membrane fluidity and higher cell membrane potential caused by the changes in lipid compositions, enhanced anti-oxidative ability and energy generation were involved in the development of the MDR. The specific alterations identified in this study may provide more information for overcoming MDR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call