Abstract

Columnar, smectic and lamellar polymeric liquid crystals are widely recognized as very promising charge-transporting organic semiconductors due to their ability to spontaneously self-assemble into highly ordered domains in uniform thin films over large areas. The transport properties of smectic and columnar liquid crystals are discussed in Chaps. 2 and 3. Here we examine their application to organic field-effect transistors (OFETs): after a short introduction in Sect. 9.1 we introduce the OFET configuration and show how the mobility is measured in Sect. 9.2. Section 9.3 discusses polymeric liquid crystalline semiconductors in OFETs. We review research that shows that annealing of polymers in a fluid mesophase gives a more ordered microcrystalline morphology on cooling than that kinetically determined by solution processing of the thin film. We also demonstrate the benefits of monodomain alignment and show the application of liquid crystals in light-emitting field-effect transistors. Some columnar and smectic phases are highly ordered with short intermolecular separation to give large π-π coupling. We discuss their use in OFETs in Sects. 9.4, and 9.5 respectively. Section 9.6 summarises the conclusions of the chapter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call