Abstract
NATURAL silk exhibits a strength and stiffness similar to, and a toughness up to ten times greater than, that of artificial high-performance fibres1–5. These exceptional tensile properties, the optical birefringence of some silk secretions6–9 and the molecular order exhibited by some synthetic polypeptides in solution10 all suggest that natural silk secretions might form liquid-crystalline phases. We have now used polarized-light microscopy to study the secretions from major ampullae of spiders (Nephila clavipes) and from silk glands of silkworms (Bombyx mori). As the concentration is increased by evaporation of water, nematic liquid-crystalline microstructures develop. We deduce that natural silk secretions become liquid crystalline after leaving the gland but before solidifying into a fibre, thus promoting global molecular alignment in the fibre. Our hand-drawn fibres from droplets of secretion, as well as sheared thin films, show a banded microstructure which is indicative of a periodic variation in the direction of molecular alignment11. Both B. mori and N. clavipes, on the other hand, have apparently developed processing routes that ensure uniform molecular alignment: the threads and draglines, respectively, of these species do not show banded microstructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.